Data Analytics - deltAlyz - Canada

CANADA WebsitesAdd to Favourites

Description

Data Analytics consists of applying advanced analysis techniques on raw data to extract "hidden" information.

We chose to say the word "hidden" because this information and conclusions are usually dissimulated among a large amount of data. Mastering Data Analytics techniques help our customers increase their profitability and performance as they are taking better informed decisions.

Interesting fact about data analytics is that you can apply it to almost all and any enterprise department and service. In fact, every single one of them has some data that you can deeply analyse and extract insights from it to pursue continuous improvements.

Thanks to the Data Analytics Service, our customers are able to reduce their operational costs by improving their business processes. This service also provides interactive tools that can be used to take strategic decisions.

Data Analytics, different categories

Our service consists of multiple subcategories:

Descriptive Analysis: It is the observation of past events the company went through during a specific period of time. The goal here is to process this data, summarize it, present it in a easy format and have it consumed by business managers and owners.

Diagnosis: At this step, we aim to understand the "why part" of these events. In some cases we use external data and combine it with the company's internal data to further explain some events.

For example, if we try to explain a drop or a spike in sales for a tourism business, we can import weather and geopolitical data, combine it with company's internal data, try to find correlations between them and see if there are any causations effects.

Predictive Analysis: We can certainly not read into a crystal ball, but we can apply advanced algorithms and statistical techniques on historical data to understand some behaviours in a specific business field. Using these techniques can help us predict outcomes while considering the calculated confidence interval.

Prescriptive Analysis: The goal here is to build a model that can produce set of recommendations to act on in order to maximize company's performances.

The techniques in this case are similar to those used during the predictive analysis. However, using AI, recommendations are combined with company's business rules to automatically test multiple scenarios and strategic approaches. The results are then compared and presented to the end users while highlighting the best actions to perform.

Data Analytics, necessary steps

There are some common and basic steps yet very important to follow to successfully implement a Data Analytics project.

Grouping: We need to have a clear idea of how we want to group the data that we want to analyse (it can be based on age, gender, customer size, regions, etc.)

Data Collection: Data sources can be multiple and stored in different locations (local servers, web applications, third party services, etc.). It is important to determine as early as possible, the availability of these data sources and how easy we can have access to them.

Staging Areas: There are many ways and tools that can be used to extract data and store it (in a persistent or non persistent staging area) before we can start the analysis phase. We need to make sure of the solidity of this step because it heavily affects the performance and the resilience of the entire data analytics project.

Data Cleansing and Data Preparation: The Model's quality and performance depend directly on the quality of the ingested data. The common error we usually see out there in many data analytics projects, is when analysts undermine the necessity and the importance of the data cleansing and preparation phase. In fact, in most cases, this critical step is considered as annoying and time consuming. In addition, analysts chose this job because they like to analyse data and produce recommendations and findings, so, they unfortunately rush this step to jump to the analysis part and conclusions... The results can be damaging to the entire project.

Our Data Analytics team members have been tested and certified by Microsoft to provide a high quality level of service to our customers. We have developed deep experience in this field and work with proven methodologies & best practices to successfully deliver solid and resilient Data Analytics projects.

Our team work with different technologies such as: Azure for data collection, data storage, data cleansing and preparation. We also use Power BI to deliver the interactive front end tool to the end users.

Specific details

Location

Canada

Advert details

Advert ID: 564
Displayed: 86
Added: 2020-06-20 14:19:08
Expires: 2021-06-21 09:16:00
In categories: Analytics

Comments